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A pair (X, A) is a couple, where X is a normal quasi-projective variety
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Regional fundamental group of pairs

A pair (X, A) is a couple, where X is a normal quasi-projective variety
and A is an effective divisor so that Kx + A is Q-Cartier.
For each analytic neighborhood U < X of z, we define

™ (U Aly) =

T (US™\supp(Alr))/{vp" | P = supp(A [y) is prime),.

Here, vp is the loop around P and np is the largest natural number for
which 1 — = < coeff p(A |¢).
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For each analytic neighborhood U < X of z, we define
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T (US™\supp(Alr))/{vp" | P = supp(A [y) is prime),.

Here, vp is the loop around P and np is the largest natural number for
which 1 — = < coeff p(A |¢).

Definition

We define the regional fundamental group, denoted by m°¢(X, A; z), to
be the inverse limit of 7;°%(U, Ay), where U runs over all analytic
neighborhoods of X around x
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For log smooth germs, we have that
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For log smooth germs, we have that

m (A" e Hy + o+ enHpi {0}) = Ziny @ L, @+ - @ Ly,

where m; is the largest integer so that 1 — L <q.

| §
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where m; is the largest integer so that 1 — - < ¢;
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If 2 € (X,A) is the germ of a pair, then the normal subgroups of

7 °8(X, A; ) correspond to finite Galois covers of z € (X, A) on which

the pull-back of Kx + A remains a log pair and x has a unique pre-image.
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Log discrepancies

Let m: Y — X be a projective birational morphism from a normal
quasi-projective variety.
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Examples of kit singularities

Examples of klt singularities are quotient singularities and cones over Fano
varieties.
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Results on local topology

In 2011, Kolldr and Kapovich proved that for any finitely presented group
G, we can find X of dimension 6 so that 7;°%(X;z) ~ G.

Q
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In 1870, Camille Jordan proved the following theorem using partial
differential equations:
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Jordan property for kit singularities

In 2020, Braun, Filipazzi, Svaldi, and the speaker proved the following
theorem, known as the Jordan property for kit singularities:
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Jordan property for kit singularities

In 2020, Braun, Filipazzi, Svaldi, and the speaker proved the following
theorem, known as the Jordan property for kit singularities:

Theorem (BFMS, 2020)

There exists a constant c¢(n), which only depends on n, satisfying the
following. Let (X, A;z) be a n-dimensional generalized kit singularity.
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Regularity

Let (X, A) be a log pair. The model regularity of (X, A) is the maximum
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The regularity of (X, A) at a point z, denoted by reg(X, A; x),

J. Moraga ( Princeton University. ) Toroidalization principles for singularities August 30 13/35



Regularity

Let (X, A) be a log pair. The model regularity of (X, A) is the maximum
number of components Si,...,S,  |A] which are Q-Cartier so that
Sin-n S # .

The birational regularity of (X, A) is defined to be the maximum among
the model regularity of crepant models of (X, A) minus one.

Definition

The regularity of (X, A) at a point z, denoted by reg(X, A; x), is defined
to be the maximum among the regularities of (X, B) around z, so that
B> A and (X,B) is Ic at x.
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Regularity

Let (X, A) be a log pair. The model regularity of (X, A) is the maximum
number of components Si,...,S,  |A] which are Q-Cartier so that
Sin-n S # .

The birational regularity of (X, A) is defined to be the maximum among
the model regularity of crepant models of (X, A) minus one.

Definition

The regularity of (X, A) at a point z, denoted by reg(X, A; x), is defined
to be the maximum among the regularities of (X, B) around z, so that
B> A and (X,B) is Ic at x.

The regularity of a n-dimensional kit singularity is an integer in the
interval {0,...,n —1}.
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Regularity

Let (X, A) be a log pair. The model regularity of (X, A) is the maximum
number of components Si,..., S, < |A] which are Q-Cartier so that
Sin--n S #J.

The birational regularity of (X, A) is defined to be the maximum among
the model regularity of crepant models of (X, A) minus one.

Definition

The regularity of (X, A) at a point z, denoted by reg(X, A; x), is defined
to be the maximum among the regularities of (X, B) around z, so that
B> A and (X,B) is Ic at x.

The regularity of a n-dimensional kit singularity is an integer in the
interval {0,...,n — 1}. Given a n-dimesional klt singularity of regularity r,
we may say it is r-regular.
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Exceptional and toric

A kit pair (X, A;x) is said to be exceptional at x,
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A kit pair (X, A;x) is said to be exceptional at x, if there exists a unique
divisorial valuation F over X with through x

J. Moraga ( Princeton University. ) Toroidalization principles for singularities August 30 14 /35



Exceptional and toric

A kit pair (X, A;x) is said to be exceptional at x, if there exists a unique
divisorial valuation E over X with through x for which we can have
ap(X, B) =0 for some (X, B) Ic at x.
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Exceptional and toric

A kit pair (X, A;x) is said to be exceptional at x, if there exists a unique
divisorial valuation E over X with through x for which we can have
ap(X, B) =0 for some (X, B) Ic at x.

Exceptional singularities are higher-dimensional analogs of the Eg, E7 and
Ejg singularities.
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A kit pair (X, A;x) is said to be exceptional at x, if there exists a unique
divisorial valuation E over X with through x for which we can have
ap(X, B) =0 for some (X, B) Ic at x.

Exceptional singularities are higher-dimensional analogs of the Eg, E7 and
Ejg singularities.

A n-dimensional toric pair (T, Br;t) is a pair obtained from (C", H;0)
quotenting by a quasi-torus of dimension r — n.
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Exceptional and toric

A kit pair (X, A;x) is said to be exceptional at x, if there exists a unique
divisorial valuation E over X with through x for which we can have
ap(X, B) =0 for some (X, B) Ic at x.

Exceptional singularities are higher-dimensional analogs of the Eg, E7 and
Ejg singularities.

A n-dimensional toric pair (T, Br;t) is a pair obtained from (C", H;0)
quotenting by a quasi-torus of dimension r — n.

The singularity (X, A) is exceptional if and only if reg(X, A;x) = 0.
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Exceptional and toric

A kit pair (X, A;x) is said to be exceptional at x, if there exists a unique
divisorial valuation E over X with through x for which we can have
ap(X, B) =0 for some (X, B) Ic at x.

Exceptional singularities are higher-dimensional analogs of the Eg, E7 and
Ejg singularities.

A n-dimensional toric pair (T, Br;t) is a pair obtained from (C", H;0)
quotenting by a quasi-torus of dimension r — n.

The singularity (X, A) is exceptional if and only if reg(X, A;x) = 0.
If (T, Ap;t) is a n-dimensional toric singularity, then
reg(T, Ar;t) =n — 1.
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Toroidalization for fundamental groups

Theorem (M, 2021)
Let (X,A;x) be a n-dimensional r-regular kit singularity.
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Let (X, A;x) be a n-dimensional r-regular kit singularity. There exists a
constant c(n), only depending on n, satisfying the following.
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Toroidalization for fundamental groups

Theorem (M, 2021)

Let (X, A;x) be a n-dimensional r-regular kit singularity. There exists a
constant c(n), only depending on n, satisfying the following. There exists
a projective birational morphism w: Y — X satisfying the following
conditions:
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Toroidalization for fundamental groups
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Let (X, A;x) be a n-dimensional r-regular kit singularity. There exists a
constant c(n), only depending on n, satisfying the following. There exists
a projective birational morphism w: Y — X satisfying the following
conditions:

© 1 extracts S1,...,Sq4+1 over x,
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Let (X, A;x) be a n-dimensional r-regular kit singularity. There exists a
constant c(n), only depending on n, satisfying the following. There exists
a projective birational morphism w: Y — X satisfying the following
conditions:

© 1 extracts S1,...,Sq4+1 over x,

@ (Y,S1+ -+ Sr41) Is toroidal at the generic point y of
Si1n---nS..11, and
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Toroidalization for fundamental groups

Theorem (M, 2021)

Let (X, A;x) be a n-dimensional r-regular kit singularity. There exists a
constant c(n), only depending on n, satisfying the following. There exists
a projective birational morphism w: Y — X satisfying the following
conditions:

© 1 extracts S1,...,Sq4+1 over x,

@ (Y,S1+ -+ Sr41) Is toroidal at the generic point y of
Si1n---nS..11, and

© there exists By > 0 supported on S1 U --- U S, for which

Tt my o (Y, Bysy) — w1 o(X, B+ M;x)

has cokernel of order at most c(n).
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Jordan property vs regularity

Corollary (M, 2021)

Let (X, A;x) be a n-dimensional r-regular kit singularity. Then, there
exists a short exact sequence

1> A—>m%X,Ajz) > N > 1,

where A is abelian of rank at most r + 1 and N has order at most c(n).

v
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In 2020, we proved that the Jordan property holds for n-dimensional kit
singularities.
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In 2020, we proved that the Jordan property holds for n-dimensional kit
singularities.

In 2021, we proved that the Jordan property holds for n-dimensional kit
singularities and it can be realized geometrically.
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singularities and it can be realized geometrically.

Question: Can we make this geometric realization effective?
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In 2021, we proved that the Jordan property holds for n-dimensional kit
singularities and it can be realized geometrically.

Question: Can we make this geometric realization effective? More
precisely, can we bound the ag, (X, A)'s above?
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In 2020, we proved that the Jordan property holds for n-dimensional kit
singularities.

In 2021, we proved that the Jordan property holds for n-dimensional kit
singularities and it can be realized geometrically.

Question: Can we make this geometric realization effective? More
precisely, can we bound the ag, (X, A)'s above?

Now, we turn to give a sketch of the proof of the Jordan property.
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In 2020, we proved that the Jordan property holds for n-dimensional kit
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In 2021, we proved that the Jordan property holds for n-dimensional kit
singularities and it can be realized geometrically.

Question: Can we make this geometric realization effective? More
precisely, can we bound the ag, (X, A)'s above?

Now, we turn to give a sketch of the proof of the Jordan property.

J. Moraga ( Princeton University. ) Toroidalization principles for singularities August 30 17 /35



Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair.

J. Moraga ( Princeton University. ) Toroidalization principles for singularities August 30 18 /35



Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that
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Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)
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Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension).
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Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.
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Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.

@ Given a n-dimensional kit germ z € (X, A),
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Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.

@ Given a n-dimensional kit germ x € (X, A), we consider a plt blow-up
7m: Y — X and the log pair (E, Ag) induced on the exceptional by
adjunction.
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Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.

@ Given a n-dimensional kit germ x € (X, A), we consider a plt blow-up
7m: Y — X and the log pair (E, Ag) induced on the exceptional by
adjunction. We have an exact sequence
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Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.

@ Given a n-dimensional kit germ x € (X, A), we consider a plt blow-up
7m: Y — X and the log pair (E, Ag) induced on the exceptional by
adjunction. We have an exact sequence

1> Zpy - m(V,Ay) > m(FE,Ag) — 1.
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Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.

@ Given a n-dimensional kit germ x € (X, A), we consider a plt blow-up
7m: Y — X and the log pair (E, Ag) induced on the exceptional by
adjunction. We have an exact sequence

1— Zm - WI(V7 AV) - Wl(EaAE) — 1.

This exact sequence comes from the theory of Whitney stratifications.

J. Moraga ( Princeton University. ) Toroidalization principles for singularities August 30 18 /35



Sketch: Jordan property - Part |

Q Let (E,Ag) be a (n — 1)-dimensional Fano type pair. We can find a
point e € E so that

™ (B, Apse) — m(E, A)

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.

@ Given a n-dimensional kit germ x € (X, A), we consider a plt blow-up
7m: Y — X and the log pair (E, Ag) induced on the exceptional by
adjunction. We have an exact sequence

1— Zm - WI(V7 AV) - Wl(EaAE) — 1.

This exact sequence comes from the theory of Whitney stratifications.
Here, V is an open analytic subset of X for which
m(V,Ay) — 71(X, A; ) is surjective.
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Sketch: Jordan property - Part |l

© The orbifold disk bundle V' — FE trivializes over an open set
VO - EO.
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Sketch: Jordan property - Part |l

© The orbifold disk bundle V' — FE trivializes over an open set
VY — E°. The homomorphism 71 (E°, Ago;e) — m1(E?, Apo) is still
almost surjective.
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Sketch: Jordan property - Part |l

© The orbifold disk bundle V' — FE trivializes over an open set
VY — E°. The homomorphism 71 (E°, Ago;e) — m1(E?, Apo) is still
almost surjective. The group 71(EY, Ago;e) may not be finite, since
we may have to delete codimension one points of F.
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© The orbifold disk bundle V' — FE trivializes over an open set
VY — E°. The homomorphism 71 (E°, Ago;e) — m1(E?, Apo) is still
almost surjective. The group 71(EY, Ago;e) may not be finite, since
we may have to delete codimension one points of F. However, such
group is still abelian of rank at most n — 1.
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© The orbifold disk bundle V' — FE trivializes over an open set
VY — E°. The homomorphism 71 (E°, Ago;e) — m1(E?, Apo) is still
almost surjective. The group 71(EY, Ago;e) may not be finite, since
we may have to delete codimension one points of F. However, such
group is still abelian of rank at most n — 1.
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Sketch: Jordan property - Part |ll

@ We obtain a commutative diagram as follows
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Sketch: Jordan property - Part |ll

@ We obtain a commutative diagram as follows

Z x m(E° Ago;e)

1 y/ Z x m(E° Apo) —m1(E°, Ago) ——1

l

m(E,Ap) ——1

1 Loy, m1(V, Ay)

™8 (X, Ay )
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Sketch: Jordan property - Part |ll

@ We obtain a commutative diagram as follows

Z x m(E° Ago;e)

1 y/ Z x m(E° Apo) —m1(E°, Ago) ——1

l

m(E,Ap) ——1

1 Loy, m1(V, Ay)

™8 (X, Ay )

All vertical arrows are either surjective or almost surjective.
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@ We obtain a commutative diagram as follows

Z x m(E° Ago;e)

1 y/ Z x m(E° Apo) —m1(E°, Ago) ——1

l

m(E,Ap) ——1

1 Loy, m1(V, Ay)

™8 (X, Ay )

All vertical arrows are either surjective or almost surjective. Induction
on the dimension concludes the proof.
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@ We obtain a commutative diagram as follows

Z x m(E° Ago;e)

1 y/ Z x m(E° Apo) —m1(E°, Ago) ——1

l

m(E,Ap) ——1

1 Loy, m1(V, Ay)

™8 (X, Ay )

All vertical arrows are either surjective or almost surjective. Induction
on the dimension concludes the proof.
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Log canonical centers

Given a log canonical pair (X, B).
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Log canonical centers

Given a log canonical pair (X, B).A log canonical place of (X, B) is a
divisorial valuation E over X for which ag(X, B) = 0.
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Log canonical centers

Given a log canonical pair (X, B).A log canonical place of (X, B) is a
divisorial valuation E over X for which ag(X, B) = 0. A log canonical
center of (X, B) is the image of a log canonical center.
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Log canonical centers

Given a log canonical pair (X, B).A log canonical place of (X, B) is a
divisorial valuation E over X for which ag(X, B) = 0. A log canonical
center of (X, B) is the image of a log canonical center. The proof of the

toroidalization principle consists of essentially two steps:
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Log canonical centers

Given a log canonical pair (X, B).A log canonical place of (X, B) is a
divisorial valuation E over X for which ag(X, B) = 0. A log canonical
center of (X, B) is the image of a log canonical center. The proof of the

toroidalization principle consists of essentially two steps:

@ Prove the existence of fixed log canonical centers;
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Log canonical centers

Given a log canonical pair (X, B).A log canonical place of (X, B) is a
divisorial valuation E over X for which ag(X, B) = 0. A log canonical
center of (X, B) is the image of a log canonical center. The proof of the

toroidalization principle consists of essentially two steps:
@ Prove the existence of fixed log canonical centers;

@ Prove the existence of enough log canonical centers.
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Log canonical centers

Given a log canonical pair (X, B).A log canonical place of (X, B) is a
divisorial valuation E over X for which ag(X, B) = 0. A log canonical
center of (X, B) is the image of a log canonical center. The proof of the

toroidalization principle consists of essentially two steps:
@ Prove the existence of fixed log canonical centers;

@ Prove the existence of enough log canonical centers.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following.
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In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
Let G < Aut(X, B) be a finite subgroup.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
Let G < Aut(X, B) be a finite subgroup. Then, there exists a normal
subgroup A < G of index at most c(n) which acts trivially on D(X, B).

J. Moraga ( Princeton University. ) Toroidalization principles for singularities August 30 22/35



Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
Let G < Aut(X, B) be a finite subgroup. Then, there exists a normal
subgroup A < G of index at most c(n) which acts trivially on D(X, B).

v

Corollary (M; 2021)

Let n be a positive integer.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
Let G < Aut(X, B) be a finite subgroup. Then, there exists a normal
subgroup A < G of index at most c(n) which acts trivially on D(X, B).

v

Corollary (M; 2021)

Let n be a positive integer. There exists a finite set G, of finite groups
satisfying the following.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
Let G < Aut(X, B) be a finite subgroup. Then, there exists a normal
subgroup A < G of index at most c(n) which acts trivially on D(X, B).

v

Corollary (M; 2021)

Let n be a positive integer. There exists a finite set G, of finite groups
satisfying the following. Let (X, B) be a log Calabi-Yau pair of dimension
n,
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
Let G < Aut(X, B) be a finite subgroup. Then, there exists a normal
subgroup A < G of index at most c(n) which acts trivially on D(X, B).

v

Corollary (M; 2021)
Let n be a positive integer. There exists a finite set G, of finite groups
satisfying the following. Let (X, B) be a log Calabi-Yau pair of dimension

n, then
1 (D(X, B)) ~ G
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant c¢(n), only depending
on n, which satisfies the following. Let (X, B) be a log Cabali-Yau pair.
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Sketch: Fixed log canonical centers - Part |

e Step 1: We replace (X, B) a G-equivariant dlt modification of
(X, B).
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Kx-MMP which must terminate with a MFS.
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minimal log canonical center.
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e Step 1: We replace (X, B) a G-equivariant dlt modification of
(X, B). We can further pass to a G-terminalization of X. We run a
Kx-MMP which must terminate with a MFS.

@ Step 2: In the dIt modification, we prove that it suffices to fix a
minimal log canonical center. By induction on the dimension, it will
suffice to produce a fixed divisor in | B].
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o Step 3: Let X — Z be the MFS and (F, Br) be the pair obtained
by adjunction to a general fiber.
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suffice to produce a fixed divisor in | B].

o Step 3: Let X — Z be the MFS and (F, Br) be the pair obtained
by adjunction to a general fiber. We have a short exact sequence

1->Gpr—>G—>Gz—1,

where G acts fiberwise and Gz acts on the base.
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Sketch: Fixed log canonical centers - Part |l

o Step 4: We assume that (F, Br) has at least one log canonical
center of dimension .
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o Step 4: We assume that (F, Br) has at least one log canonical
center of dimension i. Using BAB, we prove that the number of lcc of
(F, Br) of dimension i is bounded above by a constant k(i), which
only depends on 1.
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o Step 4: We assume that (F, Br) has at least one log canonical
center of dimension i. Using BAB, we prove that the number of lcc of
(F, Br) of dimension i is bounded above by a constant k(i), which
only depends on i. Hence, (X, B + M) has at most k(i) lcc which
are horizontal over Z. These must be permuted by G.
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Replacing G with the kernel, we may assume G fixes such a Icc.
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Sketch: Fixed log canonical centers - Part Ill

e Step 5: We assume that (Z, Bz) has a log canonical center.
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apply induction to deduce that Gz fixes a glc center of (Z, By).
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e Step 5: We assume that (Z, Bz) has a log canonical center.We can
apply induction to deduce that Gz fixes a glc center of (Z, Bz). Up
to performing an extraction, we may assume that Gz fixes a
component S of | Bz|. We may modify X so that, |B| has at least
one component mapping onto S, (X, B) remains dlt, and
—(Kx + |B]) is ample over Z.
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apply induction to deduce that Gz fixes a glc center of (Z, Bz). Up
to performing an extraction, we may assume that Gz fixes a
component S of | Bz|. We may modify X so that, |B| has at least
one component mapping onto S, (X, B) remains dlt, and
—(Kx + |B]) is ample over Z. Under these conditions, we can prove
that the number of components of | B| mapping onto S is at most
dim X + 1.
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e Step 5: We assume that (Z, Bz) has a log canonical center.We can
apply induction to deduce that Gz fixes a glc center of (Z, Bz). Up
to performing an extraction, we may assume that Gz fixes a
component S of | Bz|. We may modify X so that, |B| has at least
one component mapping onto S, (X, B) remains dlt, and
—(Kx + |B]) is ample over Z. Under these conditions, we can prove
that the number of components of | B| mapping onto S is at most
dim X + 1. Hence, G must permute the components of | B| mapping
onto S, so we have

G — Sk,

where k < n. Replacing G by the kernel of this homomorphism, we
obtain the fixed component.
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Sketch: Fixed log canonical centers - Part |V

e Step 6: If (X, B) has non-trivial dual complex.
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e Step 6: If (X, B) has non-trivial dual complex. Then, either (F, Br)
or (Z, Bz) have non-trivial dual complex.
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Sketch: Fixed log canonical centers - Part |V

e Step 6: If (X, B) has non-trivial dual complex. Then, either (F, Br)
or (Z, Bz) have non-trivial dual complex. Hence, Step 4 and Step 5
imply that we can always find a G-fixed component of | B|
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e Step 6: If (X, B) has non-trivial dual complex. Then, either (F, Br)
or (Z, Bz) have non-trivial dual complex. Hence, Step 4 and Step 5
imply that we can always find a G-fixed component of | B| (up to
passing to a normal subgroup of G of index at most max{n!, k(i)!}).
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e Step 6: If (X, B) has non-trivial dual complex. Then, either (F, Br)
or (Z, Bz) have non-trivial dual complex. Hence, Step 4 and Step 5
imply that we can always find a G-fixed component of | B| (up to
passing to a normal subgroup of G of index at most max{n!, k(i)!}).
Hence, we can perform adjunction to such S = | B| and deduce the
statement by induction on the dimension.
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Regularity vs. rank

The following is the main projective result towards the toroidalization of
kit singularities.
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Regularity vs. rank

The following is the main projective result towards the toroidalization of
kit singularities.

Theorem (M, 2021)

Let n and N be two positive integers. There exists a constant c(n, N), only
depending on n and N, satisfying the following. Let (X, B) be log
Calabi-Yau pair and A := 7], < Aut(X, B). Assume the following
conditions hold:

@ X is a n-dimensional Fano type variety, and

Q@ N(Kx +B) ~0.
If m = c¢(n, N), then the birational regularity of (X, B) is at least r.
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Sketch: Rank vs. regularity - Part |

e Step 1: We replace (X, B) with a A-equivariant dlt modification,
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e Step 1: We replace (X, B) with a A-equivariant dlt modification,
then a A-terminalization.
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Sketch: Rank vs. regularity - Part |

e Step 1: We replace (X, B) with a A-equivariant dlt modification,
then a A-terminalization. Then, we run a Kx-MMP. This MMP
terminates with a MFS.
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e Step 1: We replace (X, B) with a A-equivariant dlt modification,
then a A-terminalization. Then, we run a Kx-MMP. This MMP
terminates with a MFS.

o Step 2: We have a MFS X — Z which is A-equivariant. If the
dimension of the fiber and base is less than the dimension of X, then
we can proceed by induction on the dimension.
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then a A-terminalization. Then, we run a Kx-MMP. This MMP
terminates with a MFS.

o Step 2: We have a MFS X — Z which is A-equivariant. If the
dimension of the fiber and base is less than the dimension of X, then
we can proceed by induction on the dimension.

o Step 3: Then, we are left to the case in which X belongs to a
bounded family of Fano varieties.
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Sketch: Rank vs. regularity - Part Il

@ Step 4: Now, we assume that X is in a bounded family.
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@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups.
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@ Step 5: A induces an action on GG/B by action on the left.
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particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

@ Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety.
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@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

@ Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety. Hence, the action of A on
G/B has an almost fixed point.
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@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

@ Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety. Hence, the action of A on
G/B has an almost fixed point. Replacing A with a subgroup, we
may assume the action has a fixed point.
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@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

@ Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety. Hence, the action of A on
G/B has an almost fixed point. Replacing A with a subgroup, we
may assume the action has a fixed point. Hence, A must be
contained in a Borel subgroup of G.

J. Moraga ( Princeton University. ) Toroidalization principles for singularities August 30 29/35



Sketch: Rank vs. regularity - Part Il

@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

@ Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety. Hence, the action of A on
G/B has an almost fixed point. Replacing A with a subgroup, we
may assume the action has a fixed point. Hence, A must be
contained in a Borel subgroup of G. In particular, since A is made of
semi-simple elements, we have that

A<GF <B<G=aut(X,B).
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@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

@ Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety. Hence, the action of A on
G/B has an almost fixed point. Replacing A with a subgroup, we
may assume the action has a fixed point. Hence, A must be
contained in a Borel subgroup of G. In particular, since A is made of
semi-simple elements, we have that

A<GF <B<G=aut(X,B).

We conclude that A < GF, < Aut(X, B).
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@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where

G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.
Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety. Hence, the action of A on
G/B has an almost fixed point. Replacing A with a subgroup, we
may assume the action has a fixed point. Hence, A must be
contained in a Borel subgroup of G. In particular, since A is made of
semi-simple elements, we have that

A<GF <B<G=aut(X,B).

We conclude that A < GF, < Aut(X, B). Hence, k is at least 7.
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@ Step 4: Now, we assume that X is in a bounded family. In
particular, we may assume that A < Aut(X, B), where
G := Aut(X, B) belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

@ Step 5: A induces an action on G/B by action on the left. G/B is a
projective rationally connected variety. Hence, the action of A on
G/B has an almost fixed point. Replacing A with a subgroup, we
may assume the action has a fixed point. Hence, A must be
contained in a Borel subgroup of G. In particular, since A is made of
semi-simple elements, we have that

A<GF <B<G=aut(X,B).

We conclude that A < GF, < Aut(X, B). Hence, k is at least 7.
Thus, the regularity of (X, B + M) is at least 7.
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Minimal log discrepancy

Definition
Let (X, A;x) be a kit singularity.
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Minimal log discrepancy

Definition

Let (X, A;x) be a kit singularity. Its minimal log discrepancy is the
minimum among all the log discrepancies of prime divisors with center x.
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Definition

Let (X, A;x) be a kit singularity. Its minimal log discrepancy is the
minimum among all the log discrepancies of prime divisors with center x.
It is denoted by mld (X, A; x).
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.

Conjecture (M, Boundedness of the regional fundamental group)

Let n and N be positive integers. Let € > 0 and ¢ € (0, 1).
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.

Conjecture (M, Boundedness of the regional fundamental group)

Let n and N be positive integers. Let € > 0 and 6 € (0, 1).There exists a
constant p := p(n, N, €,0) that satisfies the following.
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.

Conjecture (M, Boundedness of the regional fundamental group)

Let n and N be positive integers. Let € > 0 and 6 € (0, 1).There exists a
constant p := p(n, N, €,0) that satisfies the following. Let (X, A;z) be a
kit pair of dimension n.
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.

Conjecture (M, Boundedness of the regional fundamental group)

Let n and N be positive integers. Let € > 0 and 6 € (0, 1).There exists a
constant p := p(n, N, €,0) that satisfies the following. Let (X, A;z) be a
kit pair of dimension n. Assume that m = mld(X, A;z) > e.
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.

Conjecture (M, Boundedness of the regional fundamental group)

Let n and N be positive integers. Let € > 0 and 6 € (0, 1).There exists a
constant p := p(n, N, €,0) that satisfies the following. Let (X, A;z) be a
klt pair of dimension n. Assume that m = mld(X, A;z) > €. Furthermore,
assume that there are at most N divisorial valuations with center x and
log discrepancy in the interval [m,m + §).
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.

Conjecture (M, Boundedness of the regional fundamental group)

Let n and N be positive integers. Let € > 0 and 6 € (0, 1).There exists a
constant p := p(n, N, €,0) that satisfies the following. Let (X, A;z) be a
klt pair of dimension n. Assume that m = mld(X, A;z) > €. Furthermore,
assume that there are at most N divisorial valuations with center x and
log discrepancy in the interval [m,m + ¢). Then, we have that

T8 (X, A z)| < p.

We call this conjecture the boundedness of the regional fundamental
group.
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constant p := p(n, N, €,0) that satisfies the following. Let (X, A;z) be a
klt pair of dimension n. Assume that m = mld(X, A;z) > €. Furthermore,
assume that there are at most N divisorial valuations with center x and
log discrepancy in the interval [m,m + ¢). Then, we have that

T8 (X, A z)| < p.

We call this conjecture the boundedness of the regional fundamental
group.
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Known cases

Theorem (M, 2021, work in progress)

The boundedness of the regional fundamental group conjecture holds for
the following classes of singularities:
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Known cases

Theorem (M, 2021, work in progress)

The boundedness of the regional fundamental group conjecture holds for
the following classes of singularities:

@ Toric singularities,
@ quotient singularities,
© isolated 3-fold singularities, and

Q exceptional singularities.
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Known cases

Theorem (M, 2021, work in progress)

The boundedness of the regional fundamental group conjecture holds for
the following classes of singularities:

@ Toric singularities,
@ quotient singularities,
© isolated 3-fold singularities, and

Q exceptional singularities.
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Further conjectures

The following two conjectures are standard in the minimal model program:
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Further conjectures

The following two conjectures are standard in the minimal model program:

Conjecture (Upper bound for the minimal log discrepancy)
Let (X, A;x) be a klt singularity.
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Further conjectures

The following two conjectures are standard in the minimal model program:

Conjecture (Upper bound for the minimal log discrepancy)

Let (X, A;x) be a kit singularity. Then, there exists a prime divisor E over
X with center z for which ag(X, A; z) < a(n).
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Further conjectures

The following two conjectures are standard in the minimal model program:

Conjecture (Upper bound for the minimal log discrepancy)

Let (X, A;x) be a kit singularity. Then, there exists a prime divisor E over
X with center z for which ag(X, A; z) < a(n).

The previous conjecture is known as the upper bound for minimal log
discrepancies.
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Further conjectures

The following two conjectures are standard in the minimal model program:

Conjecture (Upper bound for the minimal log discrepancy)

Let (X, A;x) be a kit singularity. Then, there exists a prime divisor E over
X with center z for which ag(X, A; z) < a(n).

The previous conjecture is known as the upper bound for minimal log
discrepancies.

Conjecture (Zariski closedness of the diminished base locus)

Let (X, A) be a projective generalized kit pair. Then, Bs_(Kx + A) is
Zariski closed.

The previous conjecture is known as the Zariski closedness of the
diminished base locus.
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Fundamental groups and termination

The previous conjectures imply the termination of flips with scaling.
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Fundamental groups and termination

The previous conjectures imply the termination of flips with scaling.

Theorem (M, 2021, work in progress)

Assume the following conjectures hold:
© The boundedness of the regional fundamental group in dimension n,
@ the upper bound for the minimal log discrepancy in dimension n, and
© the Zariski closedness of the diminished base locus in dimension n.

Then, termination of flips with scaling for generalized pairs in dimension n
holds.

v
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Thanks for your attention!
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