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Regional fundamental group

Let pX;xq be an algebraic singularity.

For each analytic neighborhood
U Ă X of X of x, we define

πreg1 pU ;xq :“ π1pU
smq.

Definition

The regional fundamental group of X at x, denoted by πreg1 pX;xq, is the
inverse limit of πreg1 pUq, where U runs over all the analytic neighborhoods
of x in X.

If X has an isolated singularity at x, then this is the classic fundamental
group of the link of the singularity.
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Regional fundamental group of pairs

A pair pX,∆q is a couple,

where X is a normal quasi-projective variety
and ∆ is an effective divisor so that KX `∆ is Q-Cartier.

For each analytic neighborhood U Ă X of x, we define

πreg1 pU,∆|U q :“

π1pU
smz suppp∆|U qq{xγ

nP
P | P Ă suppp∆ |U q is primeyn.

Here, γP is the loop around P and nP is the largest natural number for
which 1´ 1

nP
ď coeffP p∆ |U q.

Definition

We define the regional fundamental group, denoted by πreg1 pX,∆;xq, to
be the inverse limit of πreg1 pU,∆U q, where U runs over all analytic
neighborhoods of X around x
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Example

Example

For log smooth germs, we have that

πreg1 pAn, c1H1 ` ¨ ¨ ¨ ` cnHn; t0uq “ Zm1 ‘ Zm2 ‘ ¨ ¨ ¨ ‘ Zmn ,

where mi is the largest integer so that 1´ 1
mi
ď ci.

Remark

If x P pX,∆q is the germ of a pair, then the normal subgroups of
πreg1 pX,∆;xq correspond to finite Galois covers of x P pX,∆q on which
the pull-back of KX `∆ remains a log pair and x has a unique pre-image.
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Log discrepancies

Let π : Y Ñ X be a projective birational morphism from a normal
quasi-projective variety.

Let E Ă Y be a prime divisor on Y . We define
the log discrepancy of pX,∆q at E to be

aEpX,∆q :“ 1´ coeffEpKY ´ π
˚pKX `∆qq.

Definition

We say that pX,∆q is Kawamata log terminal if aEpX,∆q ą 0 for every
E over X.We say that pX,∆q is log canonical if aEpX,∆q ě 0 for every
E over X.We may write klt (resp. lc) to abbreviate Kawamata log
terminal (resp. log canonical).
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Examples of klt singularities

Example

Examples of klt singularities are quotient singularities and cones over Fano
varieties.

Examples of lc singularities are cones over log Calabi-Yau pairs and
quotient of these.

Example

The cone over a rational curve of degree n is klt. On the other hand, the
cone over an elliptic curve is lc but not klt.

The importance of klt singularities relies on two facts:

1 Minimal models of smooth varieties have klt singularities, and

2 Most vanishing theorems for smooth varieties also hold for varieties
with klt singularities.
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Results on local topology

In 2011, Kollár and Kapovich proved that for any finitely presented group
G, we can find X of dimension 6 so that πreg1 pX;xq » G.

In 2012, Xu proved that πreg1 pX,∆;xq has finite pro-finite completion
provided that pX,∆q is klt around x.

In 2019, Braun proved that πreg1 pX,∆;xq is finite provided that pX,∆q is
klt around x.

Question: What possible finite groups can we achieve as regional
fundamental groups of n-dimensional klt singularities?
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Jordan property

In 1870, Camille Jordan proved the following theorem using partial
differential equations:

Theorem (Jordan, 1870)

There exists a constant cpnq, which only depends on n, satisfying the
following. Let G ď GLnpCq be a finite subgroup. Then, there exists a
normal abelian subgroup A ď G of index at most cpnq and rank at most n.

In 2007, Collins proved that we can take cpnq “ n! whenever n ě 71.
Nowadays, this property of being “almost abelian” is known as the Jordan
property.
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Quotient singularities

The following is a straightforward corollary of Jordan’s theorem:

Corollary (Jordan, 1870)

There exists a constant cpnq, which only depends on n, satisfying the
following. Let pX;xq be a n-dimensional quotient singularity. Then, the
group πreg1 pX;xq admits a normal abelian subgroup of index at most cpnq
and rank at most n.

This means that there exists a short exact sequence

1 Ñ AÑ πreg1 pX;xq Ñ N Ñ 1,

where A is abelian of rank at most n and N has order at most cpnq.
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Jordan property for klt singularities

In 2020, Braun, Filipazzi, Svaldi, and the speaker proved the following
theorem, known as the Jordan property for klt singularities:

Theorem (BFMS, 2020)

There exists a constant cpnq, which only depends on n, satisfying the
following. Let pX,∆;xq be a n-dimensional generalized klt singularity.
Then, there exists a short exact sequence

1 Ñ AÑ πreg1 pX,∆;xq Ñ N Ñ 1

where A is abelian of rank at most n and N has order at most cpnq.
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Previous theorem

There are three downsides to the previous theorem:

1 The proof only works over the complex numbers,

2 the isomorphism is not algebraic (not even realizable), and

3 the control on the rank of A is not optimal.
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Regularity

Let pX,∆q be a log pair.

The model regularity of pX,∆q is the maximum
number of components S1, . . . , Sr Ă t∆u which are Q-Cartier so that
S1 X ¨ ¨ ¨ X Sr ‰ H.

The birational regularity of pX,∆q is defined to be the maximum among
the model regularity of crepant models of pX,∆q minus one.

Definition

The regularity of pX,∆q at a point x, denoted by regpX,∆;xq, is defined
to be the maximum among the regularities of pX,Bq around x, so that
B ě ∆ and pX,Bq is lc at x.

The regularity of a n-dimensional klt singularity is an integer in the
interval t0, . . . , n´ 1u. Given a n-dimesional klt singularity of regularity r,
we may say it is r-regular.
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Exceptional and toric

A klt pair pX,∆;xq is said to be exceptional at x,

if there exists a unique
divisorial valuation E over X with through x for which we can have
aEpX,Bq “ 0 for some pX,Bq lc at x.

Exceptional singularities are higher-dimensional analogs of the E6, E7 and
E8 singularities.

A n-dimensional toric pair pT,BT ; tq is a pair obtained from pCr, H; 0q
quotenting by a quasi-torus of dimension r ´ n.

Example

The singularity pX,∆q is exceptional if and only if regpX,∆;xq “ 0.
If pT,∆T ; tq is a n-dimensional toric singularity, then
regpT,∆T ; tq “ n´ 1.
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Toroidalization for fundamental groups

Theorem (M, 2021)

Let pX,∆;xq be a n-dimensional r-regular klt singularity.

There exists a
constant cpnq, only depending on n, satisfying the following. There exists
a projective birational morphism π : Y Ñ X satisfying the following
conditions:

1 π extracts S1, . . . , Sr`1 over x,

2 pY, S1 ` ¨ ¨ ¨ ` Sr`1q is toroidal at the generic point y of
S1 X ¨ ¨ ¨ X Sr`1, and

3 there exists BY ě 0 supported on S1 Y ¨ ¨ ¨ Y Sr`1 for which

π˚ : πreg1 pY,BY ; yq Ñ πreg1 pX,B `M ;xq

has cokernel of order at most cpnq.
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Jordan property vs regularity

Corollary (M, 2021)

Let pX,∆;xq be a n-dimensional r-regular klt singularity. Then, there
exists a short exact sequence

1 Ñ AÑ πreg1 pX,∆;xq Ñ N Ñ 1,

where A is abelian of rank at most r ` 1 and N has order at most cpnq.
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Summary

In 2020, we proved that the Jordan property holds for n-dimensional klt
singularities.

In 2021, we proved that the Jordan property holds for n-dimensional klt
singularities and it can be realized geometrically.

Question: Can we make this geometric realization effective? More
precisely, can we bound the aSipX,∆q’s above?

Now, we turn to give a sketch of the proof of the Jordan property.
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Sketch: Jordan property - Part I

1 Let pE,∆Eq be a pn´ 1q-dimensional Fano type pair.

We can find a
point e P E so that

πreg1 pE,∆E ; eq Ñ π1pE,∆q

is almost surjective (the index of the image is bounded by a constant
on the dimension). This is a consequence of the work of Prokhorov
and Shramov on finite automorphisms of RC varieties.

2 Given a n-dimensional klt germ x P pX,∆q, we consider a plt blow-up
π : Y Ñ X and the log pair pE,∆Eq induced on the exceptional by
adjunction. We have an exact sequence

1 Ñ Zm Ñ π1pV,∆V q Ñ π1pE,∆Eq Ñ 1.

This exact sequence comes from the theory of Whitney stratifications.
Here, V is an open analytic subset of X for which
π1pV,∆V q Ñ π1pX,∆;xq is surjective.
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Sketch: Jordan property - Part II

3 The orbifold disk bundle V Ñ E trivializes over an open set
V 0 Ñ E0.

The homomorphism π1pE
0,∆E0 ; eq Ñ π1pE

0,∆E0q is still
almost surjective. The group π1pE

0,∆E0 ; eq may not be finite, since
we may have to delete codimension one points of E. However, such
group is still abelian of rank at most n´ 1.
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Sketch: Jordan property - Part III

4 We obtain a commutative diagram as follows

Zˆ π1pE0,∆E0 ; eq

��
1 // Z //

��

Zˆ π1pE0,∆E0q //

��

π1pE
0,∆E0q //

��

1

1 // Zm
// π1pV,∆V q //

��

π1pE,∆Eq // 1

πreg1 pX,∆;xq

All vertical arrows are either surjective or almost surjective. Induction
on the dimension concludes the proof.
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Log canonical centers

Given a log canonical pair pX,Bq.

A log canonical place of pX,Bq is a
divisorial valuation E over X for which aEpX,Bq “ 0. A log canonical
center of pX,Bq is the image of a log canonical center. The proof of the

toroidalization principle consists of essentially two steps:

1 Prove the existence of fixed log canonical centers;

2 Prove the existence of enough log canonical centers.
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Fixed log canonical centers

In order to prove the toroidalization principle, first, we need to seek for
fixed log canonical centers.

Theorem (M; 2021)

Let n be a positive integer. There exists a constant cpnq, only depending
on n, which satisfies the following. Let pX,Bq be a log Cabali-Yau pair.
Let G ď AutpX,Bq be a finite subgroup.Then, there exists a normal
subgroup A ď G of index at most cpnq which acts trivially on DpX,Bq.

Corollary (M; 2021)

Let n be a positive integer. There exists a finite set Gn of finite groups
satisfying the following. Let pX,Bq be a log Calabi-Yau pair of dimension
n, then

π1pDpX,Bqq » G

for some G P Gn.
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Sketch: Fixed log canonical centers - Part I

Step 1: We replace pX,Bq a G-equivariant dlt modification of
pX,Bq.

We can further pass to a G-terminalization of X. We run a
KX -MMP which must terminate with a MFS.

Step 2: In the dlt modification, we prove that it suffices to fix a
minimal log canonical center. By induction on the dimension, it will
suffice to produce a fixed divisor in tBu.

Step 3: Let X Ñ Z be the MFS and pF,BF q be the pair obtained
by adjunction to a general fiber. We have a short exact sequence

1 Ñ GF Ñ GÑ GZ Ñ 1,

where GF acts fiberwise and GZ acts on the base.
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Sketch: Fixed log canonical centers - Part II

Step 4: We assume that pF,BF q has at least one log canonical
center of dimension i.

Using BAB, we prove that the number of lcc of
pF,BF q of dimension i is bounded above by a constant kpiq, which
only depends on i. Hence, pX,B `Mq has at most kpiq lcc which
are horizontal over Z. These must be permuted by G. Thus, we have
a natural homomorphism

GÑ Skpiq.

Replacing G with the kernel, we may assume G fixes such a lcc.
Performing certain extraction, we may find a component of tBu

mapping to such lcc.
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Sketch: Fixed log canonical centers - Part III

Step 5: We assume that pZ,BZq has a log canonical center.

We can
apply induction to deduce that GZ fixes a glc center of pZ,BZq. Up
to performing an extraction, we may assume that GZ fixes a
component S of tBZu. We may modify X so that, tBu has at least
one component mapping onto S, pX,Bq remains dlt, and
´pKX ` tBuq is ample over Z. Under these conditions, we can prove
that the number of components of tBu mapping onto S is at most
dimX ` 1. Hence, G must permute the components of tBu mapping
onto S, so we have

GÑ Sk,

where k ď n. Replacing G by the kernel of this homomorphism, we
obtain the fixed component.
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Sketch: Fixed log canonical centers - Part IV

Step 6: If pX,Bq has non-trivial dual complex.

Then, either pF,BF q

or pZ,BZq have non-trivial dual complex. Hence, Step 4 and Step 5
imply that we can always find a G-fixed component of tBu (up to
passing to a normal subgroup of G of index at most maxtn!, kpiq!u).
Hence, we can perform adjunction to such S “ tBu and deduce the
statement by induction on the dimension.
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Regularity vs. rank

The following is the main projective result towards the toroidalization of
klt singularities.

Theorem (M, 2021)

Let n and N be two positive integers.There exists a constant cpn,Nq, only
depending on n and N , satisfying the following. Let pX,Bq be log
Calabi-Yau pair and A :“ Zr

m ď AutpX,Bq. Assume the following
conditions hold:

1 X is a n-dimensional Fano type variety, and

2 NpKX `Bq „ 0.

If m ě cpn,Nq, then the birational regularity of pX,Bq is at least r.
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Sketch: Rank vs. regularity - Part I

Step 1: We replace pX,Bq with a A-equivariant dlt modification,

then a A-terminalization. Then, we run a KX -MMP. This MMP
terminates with a MFS.

Step 2: We have a MFS X Ñ Z which is A-equivariant. If the
dimension of the fiber and base is less than the dimension of X, then
we can proceed by induction on the dimension.

Step 3: Then, we are left to the case in which X belongs to a
bounded family of Fano varieties.
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Sketch: Rank vs. regularity - Part II

Step 4: Now, we assume that X is in a bounded family.

In
particular, we may assume that A ď AutpX,Bq, where
G :“ AutpX,Bq belongs to a bounded family of linear algebraic
groups. Thus, we may assume that G is a fixed reductive group.

Step 5: A induces an action on G{B by action on the left. G{B is a
projective rationally connected variety. Hence, the action of A on
G{B has an almost fixed point. Replacing A with a subgroup, we
may assume the action has a fixed point. Hence, A must be
contained in a Borel subgroup of G. In particular, since A is made of
semi-simple elements, we have that

A ď Gk
m ď B ď G “ autpX,Bq.

We conclude that A ď Gk
m ď AutpX,Bq. Hence, k is at least r.

Thus, the regularity of pX,B `Mq is at least r.
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Minimal log discrepancy

Definition

Let pX,∆;xq be a klt singularity.

Its minimal log discrepancy is the
minimum among all the log discrepancies of prime divisors with center x.
It is denoted by mldpX,∆;xq.
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Boundedness conjecture

The following conjecture is motivated by the toroidalization of
fundamental groups.

Conjecture (M, Boundedness of the regional fundamental group)

Let n and N be positive integers. Let ε ą 0 and δ P p0, 1q.There exists a
constant ρ :“ ρpn,N, ε, δq that satisfies the following. Let pX,∆;xq be a
klt pair of dimension n. Assume that m “ mldpX,∆;xq ą ε. Furthermore,
assume that there are at most N divisorial valuations with center x and
log discrepancy in the interval rm,m` δq. Then, we have that

|πreg1 pX,∆;xq| ď ρ.

We call this conjecture the boundedness of the regional fundamental
group.
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Known cases

Theorem (M, 2021, work in progress)

The boundedness of the regional fundamental group conjecture holds for
the following classes of singularities:

1 Toric singularities,

2 quotient singularities,

3 isolated 3-fold singularities, and

4 exceptional singularities.
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Further conjectures

The following two conjectures are standard in the minimal model program:

Conjecture (Upper bound for the minimal log discrepancy)

Let pX,∆;xq be a klt singularity. Then, there exists a prime divisor E over
X with center x for which aEpX,∆;xq ď apnq.

The previous conjecture is known as the upper bound for minimal log
discrepancies.

Conjecture (Zariski closedness of the diminished base locus)

Let pX,∆q be a projective generalized klt pair. Then, Bs´pKX `∆q is
Zariski closed.

The previous conjecture is known as the Zariski closedness of the
diminished base locus.
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Fundamental groups and termination

The previous conjectures imply the termination of flips with scaling.

Theorem (M, 2021, work in progress)

Assume the following conjectures hold:

1 The boundedness of the regional fundamental group in dimension n,

2 the upper bound for the minimal log discrepancy in dimension n, and

3 the Zariski closedness of the diminished base locus in dimension n.

Then, termination of flips with scaling for generalized pairs in dimension n
holds.
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Thanks for your attention!
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